Predicting Spatial Distribution of Key Honeybee Pests in Kenya Using Remotely Sensed and Bioclimatic Variables: Key Honeybee Pests Distribution Models

نویسندگان

  • David M. Makori
  • Ayuka T. Fombong
  • Elfatih M. Abdel-Rahman
  • Kiatoko Nkoba
  • Juliette Ongus
  • Janet Irungu
  • Gladys Mosomtai
  • Sospeter Makau
  • Onisimo Mutanga
  • John Odindi
  • Suresh K. Raina
  • Tobias Landmann
چکیده

Bee keeping is indispensable to global food production. It is an alternate income source, especially in rural underdeveloped African settlements, and an important forest conservation incentive. However, dwindling honeybee colonies around the world are attributed to pests and diseases whose spatial distribution and influences are not well established. In this study, we used remotely sensed data to improve the reliability of pest ecological niche (EN) models to attain reliable pest distribution maps. Occurrence data on four pests (Aethina tumida, Galleria mellonella, Oplostomus haroldi and Varroa destructor) were collected from apiaries within four main agro-ecological regions responsible for over 80% of Kenya’s bee keeping. Africlim bioclimatic and derived normalized difference vegetation index (NDVI) variables were used to model their ecological niches using Maximum Entropy (MaxEnt). Combined precipitation variables had a high positive logit influence on all remotely sensed and biotic models’ performance. Remotely sensed vegetation variables had a substantial effect on the model, contributing up to 40.8% for G. mellonella and regions with high rainfall seasonality were predicted to be high-risk areas. Projections (to 2055) indicated that, with the current climate change trend, these regions will experience increased honeybee pest risk. We conclude that honeybee pests could be modelled using bioclimatic data and remotely sensed variables in MaxEnt. Although the bioclimatic data were most relevant in all model results, incorporating vegetation seasonality variables to improve mapping the ‘actual’ habitat of key honeybee pests and to identify risk and containment zones needs to be further investigated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absconding of Honeybee Colonies from Beehives: Underlying Factors and its Financial Implications for Beekeepers in Tanzania

A study was conducted to investigate honeybee colonies absconding from beehives and its financial implication among beekeepers in Tabora and Katavi regions, Western Tanzania. Four districts were selected on the basis of adoption of improved beehives. A total of 198 beekeepers were randomly selected for interviews. Data collected from beekeepers using a questionnaire were supplemented with data ...

متن کامل

Spatiotemporal Estimation of PM2.5 Concentration Using Remotely Sensed Data, Machine Learning, and Optimization Algorithms

PM 2.5 (particles <2.5 μm in aerodynamic diameter) can be measured by ground station data in urban areas, but the number of these stations and their geographical coverage is limited. Therefore, these data are not adequate for calculating concentrations of Pm2.5 over a large urban area. This study aims to use Aerosol Optical Depth (AOD) satellite images and meteorological data from 2014 to 2017 ...

متن کامل

Efficient use of sentinel sites: detection of invasive honeybee pests and diseases in the UK

Sentinel sites, where problems can be identified early or investigated in detail, form an important part of planning for exotic disease outbreaks in humans, livestock and plants. Key questions are: how many sentinels are required, where should they be positioned and how effective are they at rapidly identifying new invasions? The sentinel apiary system for invasive honeybee pests and diseases i...

متن کامل

Remote sensing-based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah

Compared to bioclimatic variables, remote sensing predictors are rarely used for predictive species modelling. When used, the predictors represent typically habitat classifications or filters rather than gradual spectral, surface or biophysical properties. Consequently, the full potential of remotely sensed predictors for modelling the spatial distribution of species remains unexplored. Here we...

متن کامل

GIS-based analysis of spatial distribution patterns of growing degree-days for agricultural applications in Iran

The geographical distribution of growing degree-days (GDDs) within Iran was studied using GIS-based maps. GDDs were calculated using daily thermal parameters (daily maximum and minimum air temperature). Based on the purpose of the study and climatic conditions of Iran, the average value of 5?C was chosen for GDD calculation. The calculations were carried out using daily weather data of 113 mete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ISPRS Int. J. Geo-Information

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017